Рассчитать высоту треугольника со сторонами 76, 63 и 18

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{76 + 63 + 18}{2}} \normalsize = 78.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{78.5(78.5-76)(78.5-63)(78.5-18)}}{63}\normalsize = 13.6187678}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{78.5(78.5-76)(78.5-63)(78.5-18)}}{76}\normalsize = 11.2892417}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{78.5(78.5-76)(78.5-63)(78.5-18)}}{18}\normalsize = 47.6656873}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 76, 63 и 18 равна 13.6187678
Высота треугольника опущенная с вершины A на сторону BC со сторонами 76, 63 и 18 равна 11.2892417
Высота треугольника опущенная с вершины C на сторону AB со сторонами 76, 63 и 18 равна 47.6656873
Ссылка на результат
?n1=76&n2=63&n3=18