Рассчитать высоту треугольника со сторонами 76, 68 и 22
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{76 + 68 + 22}{2}} \normalsize = 83}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{83(83-76)(83-68)(83-22)}}{68}\normalsize = 21.4446862}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{83(83-76)(83-68)(83-22)}}{76}\normalsize = 19.1873508}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{83(83-76)(83-68)(83-22)}}{22}\normalsize = 66.2835756}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 76, 68 и 22 равна 21.4446862
Высота треугольника опущенная с вершины A на сторону BC со сторонами 76, 68 и 22 равна 19.1873508
Высота треугольника опущенная с вершины C на сторону AB со сторонами 76, 68 и 22 равна 66.2835756
Ссылка на результат
?n1=76&n2=68&n3=22
Найти высоту треугольника со сторонами 78, 68 и 65
Найти высоту треугольника со сторонами 51, 43 и 14
Найти высоту треугольника со сторонами 145, 125 и 68
Найти высоту треугольника со сторонами 104, 73 и 46
Найти высоту треугольника со сторонами 126, 74 и 56
Найти высоту треугольника со сторонами 65, 63 и 54
Найти высоту треугольника со сторонами 51, 43 и 14
Найти высоту треугольника со сторонами 145, 125 и 68
Найти высоту треугольника со сторонами 104, 73 и 46
Найти высоту треугольника со сторонами 126, 74 и 56
Найти высоту треугольника со сторонами 65, 63 и 54