Рассчитать высоту треугольника со сторонами 76, 72 и 52
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{76 + 72 + 52}{2}} \normalsize = 100}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{100(100-76)(100-72)(100-52)}}{72}\normalsize = 49.8887652}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{100(100-76)(100-72)(100-52)}}{76}\normalsize = 47.2630407}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{100(100-76)(100-72)(100-52)}}{52}\normalsize = 69.0767518}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 76, 72 и 52 равна 49.8887652
Высота треугольника опущенная с вершины A на сторону BC со сторонами 76, 72 и 52 равна 47.2630407
Высота треугольника опущенная с вершины C на сторону AB со сторонами 76, 72 и 52 равна 69.0767518
Ссылка на результат
?n1=76&n2=72&n3=52
Найти высоту треугольника со сторонами 147, 147 и 49
Найти высоту треугольника со сторонами 130, 95 и 78
Найти высоту треугольника со сторонами 108, 98 и 75
Найти высоту треугольника со сторонами 115, 86 и 41
Найти высоту треугольника со сторонами 56, 55 и 31
Найти высоту треугольника со сторонами 141, 136 и 106
Найти высоту треугольника со сторонами 130, 95 и 78
Найти высоту треугольника со сторонами 108, 98 и 75
Найти высоту треугольника со сторонами 115, 86 и 41
Найти высоту треугольника со сторонами 56, 55 и 31
Найти высоту треугольника со сторонами 141, 136 и 106