Рассчитать высоту треугольника со сторонами 77, 50 и 43
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{77 + 50 + 43}{2}} \normalsize = 85}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{85(85-77)(85-50)(85-43)}}{50}\normalsize = 39.9919992}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{85(85-77)(85-50)(85-43)}}{77}\normalsize = 25.9688306}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{85(85-77)(85-50)(85-43)}}{43}\normalsize = 46.5023247}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 77, 50 и 43 равна 39.9919992
Высота треугольника опущенная с вершины A на сторону BC со сторонами 77, 50 и 43 равна 25.9688306
Высота треугольника опущенная с вершины C на сторону AB со сторонами 77, 50 и 43 равна 46.5023247
Ссылка на результат
?n1=77&n2=50&n3=43
Найти высоту треугольника со сторонами 110, 81 и 49
Найти высоту треугольника со сторонами 147, 126 и 32
Найти высоту треугольника со сторонами 85, 83 и 44
Найти высоту треугольника со сторонами 144, 137 и 114
Найти высоту треугольника со сторонами 74, 50 и 32
Найти высоту треугольника со сторонами 120, 86 и 84
Найти высоту треугольника со сторонами 147, 126 и 32
Найти высоту треугольника со сторонами 85, 83 и 44
Найти высоту треугольника со сторонами 144, 137 и 114
Найти высоту треугольника со сторонами 74, 50 и 32
Найти высоту треугольника со сторонами 120, 86 и 84