Рассчитать высоту треугольника со сторонами 77, 61 и 28
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{77 + 61 + 28}{2}} \normalsize = 83}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{83(83-77)(83-61)(83-28)}}{61}\normalsize = 25.4511563}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{83(83-77)(83-61)(83-28)}}{77}\normalsize = 20.1626043}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{83(83-77)(83-61)(83-28)}}{28}\normalsize = 55.4471618}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 77, 61 и 28 равна 25.4511563
Высота треугольника опущенная с вершины A на сторону BC со сторонами 77, 61 и 28 равна 20.1626043
Высота треугольника опущенная с вершины C на сторону AB со сторонами 77, 61 и 28 равна 55.4471618
Ссылка на результат
?n1=77&n2=61&n3=28
Найти высоту треугольника со сторонами 145, 137 и 42
Найти высоту треугольника со сторонами 139, 118 и 78
Найти высоту треугольника со сторонами 103, 77 и 45
Найти высоту треугольника со сторонами 135, 106 и 69
Найти высоту треугольника со сторонами 129, 86 и 58
Найти высоту треугольника со сторонами 37, 31 и 22
Найти высоту треугольника со сторонами 139, 118 и 78
Найти высоту треугольника со сторонами 103, 77 и 45
Найти высоту треугольника со сторонами 135, 106 и 69
Найти высоту треугольника со сторонами 129, 86 и 58
Найти высоту треугольника со сторонами 37, 31 и 22