Рассчитать высоту треугольника со сторонами 77, 65 и 33
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{77 + 65 + 33}{2}} \normalsize = 87.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{87.5(87.5-77)(87.5-65)(87.5-33)}}{65}\normalsize = 32.6591461}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{87.5(87.5-77)(87.5-65)(87.5-33)}}{77}\normalsize = 27.569409}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{87.5(87.5-77)(87.5-65)(87.5-33)}}{33}\normalsize = 64.3286211}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 77, 65 и 33 равна 32.6591461
Высота треугольника опущенная с вершины A на сторону BC со сторонами 77, 65 и 33 равна 27.569409
Высота треугольника опущенная с вершины C на сторону AB со сторонами 77, 65 и 33 равна 64.3286211
Ссылка на результат
?n1=77&n2=65&n3=33
Найти высоту треугольника со сторонами 144, 141 и 112
Найти высоту треугольника со сторонами 107, 89 и 65
Найти высоту треугольника со сторонами 109, 99 и 50
Найти высоту треугольника со сторонами 133, 93 и 75
Найти высоту треугольника со сторонами 137, 125 и 93
Найти высоту треугольника со сторонами 146, 122 и 97
Найти высоту треугольника со сторонами 107, 89 и 65
Найти высоту треугольника со сторонами 109, 99 и 50
Найти высоту треугольника со сторонами 133, 93 и 75
Найти высоту треугольника со сторонами 137, 125 и 93
Найти высоту треугольника со сторонами 146, 122 и 97