Рассчитать высоту треугольника со сторонами 77, 65 и 47
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{77 + 65 + 47}{2}} \normalsize = 94.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{94.5(94.5-77)(94.5-65)(94.5-47)}}{65}\normalsize = 46.8391905}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{94.5(94.5-77)(94.5-65)(94.5-47)}}{77}\normalsize = 39.5395764}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{94.5(94.5-77)(94.5-65)(94.5-47)}}{47}\normalsize = 64.7776038}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 77, 65 и 47 равна 46.8391905
Высота треугольника опущенная с вершины A на сторону BC со сторонами 77, 65 и 47 равна 39.5395764
Высота треугольника опущенная с вершины C на сторону AB со сторонами 77, 65 и 47 равна 64.7776038
Ссылка на результат
?n1=77&n2=65&n3=47
Найти высоту треугольника со сторонами 64, 62 и 55
Найти высоту треугольника со сторонами 90, 82 и 37
Найти высоту треугольника со сторонами 147, 141 и 104
Найти высоту треугольника со сторонами 116, 115 и 74
Найти высоту треугольника со сторонами 120, 101 и 48
Найти высоту треугольника со сторонами 108, 104 и 35
Найти высоту треугольника со сторонами 90, 82 и 37
Найти высоту треугольника со сторонами 147, 141 и 104
Найти высоту треугольника со сторонами 116, 115 и 74
Найти высоту треугольника со сторонами 120, 101 и 48
Найти высоту треугольника со сторонами 108, 104 и 35