Рассчитать высоту треугольника со сторонами 77, 66 и 30
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{77 + 66 + 30}{2}} \normalsize = 86.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{86.5(86.5-77)(86.5-66)(86.5-30)}}{66}\normalsize = 29.5635832}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{86.5(86.5-77)(86.5-66)(86.5-30)}}{77}\normalsize = 25.3402142}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{86.5(86.5-77)(86.5-66)(86.5-30)}}{30}\normalsize = 65.0398831}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 77, 66 и 30 равна 29.5635832
Высота треугольника опущенная с вершины A на сторону BC со сторонами 77, 66 и 30 равна 25.3402142
Высота треугольника опущенная с вершины C на сторону AB со сторонами 77, 66 и 30 равна 65.0398831
Ссылка на результат
?n1=77&n2=66&n3=30
Найти высоту треугольника со сторонами 102, 99 и 52
Найти высоту треугольника со сторонами 138, 74 и 71
Найти высоту треугольника со сторонами 96, 91 и 90
Найти высоту треугольника со сторонами 53, 45 и 13
Найти высоту треугольника со сторонами 116, 113 и 61
Найти высоту треугольника со сторонами 123, 118 и 99
Найти высоту треугольника со сторонами 138, 74 и 71
Найти высоту треугольника со сторонами 96, 91 и 90
Найти высоту треугольника со сторонами 53, 45 и 13
Найти высоту треугольника со сторонами 116, 113 и 61
Найти высоту треугольника со сторонами 123, 118 и 99