Рассчитать высоту треугольника со сторонами 77, 69 и 39
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{77 + 69 + 39}{2}} \normalsize = 92.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{92.5(92.5-77)(92.5-69)(92.5-39)}}{69}\normalsize = 38.9160222}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{92.5(92.5-77)(92.5-69)(92.5-39)}}{77}\normalsize = 34.8727991}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{92.5(92.5-77)(92.5-69)(92.5-39)}}{39}\normalsize = 68.8514239}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 77, 69 и 39 равна 38.9160222
Высота треугольника опущенная с вершины A на сторону BC со сторонами 77, 69 и 39 равна 34.8727991
Высота треугольника опущенная с вершины C на сторону AB со сторонами 77, 69 и 39 равна 68.8514239
Ссылка на результат
?n1=77&n2=69&n3=39
Найти высоту треугольника со сторонами 108, 77 и 42
Найти высоту треугольника со сторонами 124, 100 и 99
Найти высоту треугольника со сторонами 129, 118 и 75
Найти высоту треугольника со сторонами 68, 56 и 54
Найти высоту треугольника со сторонами 126, 99 и 45
Найти высоту треугольника со сторонами 127, 120 и 119
Найти высоту треугольника со сторонами 124, 100 и 99
Найти высоту треугольника со сторонами 129, 118 и 75
Найти высоту треугольника со сторонами 68, 56 и 54
Найти высоту треугольника со сторонами 126, 99 и 45
Найти высоту треугольника со сторонами 127, 120 и 119