Рассчитать высоту треугольника со сторонами 77, 70 и 8
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{77 + 70 + 8}{2}} \normalsize = 77.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{77.5(77.5-77)(77.5-70)(77.5-8)}}{70}\normalsize = 4.06060592}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{77.5(77.5-77)(77.5-70)(77.5-8)}}{77}\normalsize = 3.69145992}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{77.5(77.5-77)(77.5-70)(77.5-8)}}{8}\normalsize = 35.5303018}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 77, 70 и 8 равна 4.06060592
Высота треугольника опущенная с вершины A на сторону BC со сторонами 77, 70 и 8 равна 3.69145992
Высота треугольника опущенная с вершины C на сторону AB со сторонами 77, 70 и 8 равна 35.5303018
Ссылка на результат
?n1=77&n2=70&n3=8
Найти высоту треугольника со сторонами 64, 43 и 34
Найти высоту треугольника со сторонами 123, 84 и 49
Найти высоту треугольника со сторонами 144, 119 и 63
Найти высоту треугольника со сторонами 84, 79 и 7
Найти высоту треугольника со сторонами 134, 91 и 58
Найти высоту треугольника со сторонами 138, 136 и 97
Найти высоту треугольника со сторонами 123, 84 и 49
Найти высоту треугольника со сторонами 144, 119 и 63
Найти высоту треугольника со сторонами 84, 79 и 7
Найти высоту треугольника со сторонами 134, 91 и 58
Найти высоту треугольника со сторонами 138, 136 и 97