Рассчитать высоту треугольника со сторонами 77, 76 и 46
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{77 + 76 + 46}{2}} \normalsize = 99.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{99.5(99.5-77)(99.5-76)(99.5-46)}}{76}\normalsize = 44.1499306}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{99.5(99.5-77)(99.5-76)(99.5-46)}}{77}\normalsize = 43.5765548}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{99.5(99.5-77)(99.5-76)(99.5-46)}}{46}\normalsize = 72.9433636}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 77, 76 и 46 равна 44.1499306
Высота треугольника опущенная с вершины A на сторону BC со сторонами 77, 76 и 46 равна 43.5765548
Высота треугольника опущенная с вершины C на сторону AB со сторонами 77, 76 и 46 равна 72.9433636
Ссылка на результат
?n1=77&n2=76&n3=46
Найти высоту треугольника со сторонами 131, 118 и 18
Найти высоту треугольника со сторонами 132, 99 и 72
Найти высоту треугольника со сторонами 93, 79 и 33
Найти высоту треугольника со сторонами 49, 44 и 38
Найти высоту треугольника со сторонами 51, 38 и 37
Найти высоту треугольника со сторонами 111, 66 и 55
Найти высоту треугольника со сторонами 132, 99 и 72
Найти высоту треугольника со сторонами 93, 79 и 33
Найти высоту треугольника со сторонами 49, 44 и 38
Найти высоту треугольника со сторонами 51, 38 и 37
Найти высоту треугольника со сторонами 111, 66 и 55