Рассчитать высоту треугольника со сторонами 78, 52 и 45
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{78 + 52 + 45}{2}} \normalsize = 87.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{87.5(87.5-78)(87.5-52)(87.5-45)}}{52}\normalsize = 43.0726034}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{87.5(87.5-78)(87.5-52)(87.5-45)}}{78}\normalsize = 28.715069}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{87.5(87.5-78)(87.5-52)(87.5-45)}}{45}\normalsize = 49.7727862}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 78, 52 и 45 равна 43.0726034
Высота треугольника опущенная с вершины A на сторону BC со сторонами 78, 52 и 45 равна 28.715069
Высота треугольника опущенная с вершины C на сторону AB со сторонами 78, 52 и 45 равна 49.7727862
Ссылка на результат
?n1=78&n2=52&n3=45
Найти высоту треугольника со сторонами 128, 90 и 76
Найти высоту треугольника со сторонами 110, 80 и 34
Найти высоту треугольника со сторонами 130, 97 и 49
Найти высоту треугольника со сторонами 109, 74 и 69
Найти высоту треугольника со сторонами 124, 113 и 100
Найти высоту треугольника со сторонами 73, 58 и 21
Найти высоту треугольника со сторонами 110, 80 и 34
Найти высоту треугольника со сторонами 130, 97 и 49
Найти высоту треугольника со сторонами 109, 74 и 69
Найти высоту треугольника со сторонами 124, 113 и 100
Найти высоту треугольника со сторонами 73, 58 и 21