Рассчитать высоту треугольника со сторонами 78, 56 и 30
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{78 + 56 + 30}{2}} \normalsize = 82}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{82(82-78)(82-56)(82-30)}}{56}\normalsize = 23.7830329}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{82(82-78)(82-56)(82-30)}}{78}\normalsize = 17.074998}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{82(82-78)(82-56)(82-30)}}{30}\normalsize = 44.3949947}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 78, 56 и 30 равна 23.7830329
Высота треугольника опущенная с вершины A на сторону BC со сторонами 78, 56 и 30 равна 17.074998
Высота треугольника опущенная с вершины C на сторону AB со сторонами 78, 56 и 30 равна 44.3949947
Ссылка на результат
?n1=78&n2=56&n3=30
Найти высоту треугольника со сторонами 69, 58 и 17
Найти высоту треугольника со сторонами 135, 90 и 58
Найти высоту треугольника со сторонами 148, 134 и 131
Найти высоту треугольника со сторонами 136, 108 и 107
Найти высоту треугольника со сторонами 127, 104 и 28
Найти высоту треугольника со сторонами 135, 102 и 60
Найти высоту треугольника со сторонами 135, 90 и 58
Найти высоту треугольника со сторонами 148, 134 и 131
Найти высоту треугольника со сторонами 136, 108 и 107
Найти высоту треугольника со сторонами 127, 104 и 28
Найти высоту треугольника со сторонами 135, 102 и 60