Рассчитать высоту треугольника со сторонами 78, 57 и 22
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{78 + 57 + 22}{2}} \normalsize = 78.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{78.5(78.5-78)(78.5-57)(78.5-22)}}{57}\normalsize = 7.66158148}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{78.5(78.5-78)(78.5-57)(78.5-22)}}{78}\normalsize = 5.598848}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{78.5(78.5-78)(78.5-57)(78.5-22)}}{22}\normalsize = 19.8504611}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 78, 57 и 22 равна 7.66158148
Высота треугольника опущенная с вершины A на сторону BC со сторонами 78, 57 и 22 равна 5.598848
Высота треугольника опущенная с вершины C на сторону AB со сторонами 78, 57 и 22 равна 19.8504611
Ссылка на результат
?n1=78&n2=57&n3=22
Найти высоту треугольника со сторонами 47, 43 и 7
Найти высоту треугольника со сторонами 86, 71 и 65
Найти высоту треугольника со сторонами 126, 112 и 76
Найти высоту треугольника со сторонами 125, 94 и 76
Найти высоту треугольника со сторонами 106, 76 и 53
Найти высоту треугольника со сторонами 141, 108 и 54
Найти высоту треугольника со сторонами 86, 71 и 65
Найти высоту треугольника со сторонами 126, 112 и 76
Найти высоту треугольника со сторонами 125, 94 и 76
Найти высоту треугольника со сторонами 106, 76 и 53
Найти высоту треугольника со сторонами 141, 108 и 54