Рассчитать высоту треугольника со сторонами 78, 60 и 40
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{78 + 60 + 40}{2}} \normalsize = 89}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{89(89-78)(89-60)(89-40)}}{60}\normalsize = 39.3158012}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{89(89-78)(89-60)(89-40)}}{78}\normalsize = 30.242924}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{89(89-78)(89-60)(89-40)}}{40}\normalsize = 58.9737018}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 78, 60 и 40 равна 39.3158012
Высота треугольника опущенная с вершины A на сторону BC со сторонами 78, 60 и 40 равна 30.242924
Высота треугольника опущенная с вершины C на сторону AB со сторонами 78, 60 и 40 равна 58.9737018
Ссылка на результат
?n1=78&n2=60&n3=40
Найти высоту треугольника со сторонами 60, 39 и 30
Найти высоту треугольника со сторонами 130, 120 и 25
Найти высоту треугольника со сторонами 72, 67 и 22
Найти высоту треугольника со сторонами 143, 131 и 97
Найти высоту треугольника со сторонами 95, 59 и 38
Найти высоту треугольника со сторонами 95, 83 и 77
Найти высоту треугольника со сторонами 130, 120 и 25
Найти высоту треугольника со сторонами 72, 67 и 22
Найти высоту треугольника со сторонами 143, 131 и 97
Найти высоту треугольника со сторонами 95, 59 и 38
Найти высоту треугольника со сторонами 95, 83 и 77