Рассчитать высоту треугольника со сторонами 78, 68 и 14
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{78 + 68 + 14}{2}} \normalsize = 80}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{80(80-78)(80-68)(80-14)}}{68}\normalsize = 10.4699273}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{80(80-78)(80-68)(80-14)}}{78}\normalsize = 9.12762891}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{80(80-78)(80-68)(80-14)}}{14}\normalsize = 50.8539325}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 78, 68 и 14 равна 10.4699273
Высота треугольника опущенная с вершины A на сторону BC со сторонами 78, 68 и 14 равна 9.12762891
Высота треугольника опущенная с вершины C на сторону AB со сторонами 78, 68 и 14 равна 50.8539325
Ссылка на результат
?n1=78&n2=68&n3=14
Найти высоту треугольника со сторонами 137, 122 и 102
Найти высоту треугольника со сторонами 147, 129 и 80
Найти высоту треугольника со сторонами 140, 112 и 47
Найти высоту треугольника со сторонами 111, 86 и 78
Найти высоту треугольника со сторонами 133, 92 и 77
Найти высоту треугольника со сторонами 101, 93 и 79
Найти высоту треугольника со сторонами 147, 129 и 80
Найти высоту треугольника со сторонами 140, 112 и 47
Найти высоту треугольника со сторонами 111, 86 и 78
Найти высоту треугольника со сторонами 133, 92 и 77
Найти высоту треугольника со сторонами 101, 93 и 79