Рассчитать высоту треугольника со сторонами 78, 72 и 62
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{78 + 72 + 62}{2}} \normalsize = 106}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{106(106-78)(106-72)(106-62)}}{72}\normalsize = 58.5322534}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{106(106-78)(106-72)(106-62)}}{78}\normalsize = 54.0297724}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{106(106-78)(106-72)(106-62)}}{62}\normalsize = 67.9729395}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 78, 72 и 62 равна 58.5322534
Высота треугольника опущенная с вершины A на сторону BC со сторонами 78, 72 и 62 равна 54.0297724
Высота треугольника опущенная с вершины C на сторону AB со сторонами 78, 72 и 62 равна 67.9729395
Ссылка на результат
?n1=78&n2=72&n3=62
Найти высоту треугольника со сторонами 145, 123 и 25
Найти высоту треугольника со сторонами 109, 104 и 53
Найти высоту треугольника со сторонами 42, 36 и 29
Найти высоту треугольника со сторонами 114, 102 и 74
Найти высоту треугольника со сторонами 71, 55 и 43
Найти высоту треугольника со сторонами 98, 95 и 18
Найти высоту треугольника со сторонами 109, 104 и 53
Найти высоту треугольника со сторонами 42, 36 и 29
Найти высоту треугольника со сторонами 114, 102 и 74
Найти высоту треугольника со сторонами 71, 55 и 43
Найти высоту треугольника со сторонами 98, 95 и 18