Рассчитать высоту треугольника со сторонами 78, 75 и 54
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{78 + 75 + 54}{2}} \normalsize = 103.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{103.5(103.5-78)(103.5-75)(103.5-54)}}{75}\normalsize = 51.4557635}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{103.5(103.5-78)(103.5-75)(103.5-54)}}{78}\normalsize = 49.4766957}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{103.5(103.5-78)(103.5-75)(103.5-54)}}{54}\normalsize = 71.4663382}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 78, 75 и 54 равна 51.4557635
Высота треугольника опущенная с вершины A на сторону BC со сторонами 78, 75 и 54 равна 49.4766957
Высота треугольника опущенная с вершины C на сторону AB со сторонами 78, 75 и 54 равна 71.4663382
Ссылка на результат
?n1=78&n2=75&n3=54
Найти высоту треугольника со сторонами 91, 64 и 35
Найти высоту треугольника со сторонами 139, 133 и 125
Найти высоту треугольника со сторонами 105, 103 и 56
Найти высоту треугольника со сторонами 94, 88 и 56
Найти высоту треугольника со сторонами 128, 126 и 8
Найти высоту треугольника со сторонами 99, 83 и 57
Найти высоту треугольника со сторонами 139, 133 и 125
Найти высоту треугольника со сторонами 105, 103 и 56
Найти высоту треугольника со сторонами 94, 88 и 56
Найти высоту треугольника со сторонами 128, 126 и 8
Найти высоту треугольника со сторонами 99, 83 и 57