Рассчитать высоту треугольника со сторонами 78, 75 и 55
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{78 + 75 + 55}{2}} \normalsize = 104}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{104(104-78)(104-75)(104-55)}}{75}\normalsize = 52.2719997}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{104(104-78)(104-75)(104-55)}}{78}\normalsize = 50.2615382}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{104(104-78)(104-75)(104-55)}}{55}\normalsize = 71.2799996}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 78, 75 и 55 равна 52.2719997
Высота треугольника опущенная с вершины A на сторону BC со сторонами 78, 75 и 55 равна 50.2615382
Высота треугольника опущенная с вершины C на сторону AB со сторонами 78, 75 и 55 равна 71.2799996
Ссылка на результат
?n1=78&n2=75&n3=55
Найти высоту треугольника со сторонами 141, 130 и 58
Найти высоту треугольника со сторонами 103, 73 и 32
Найти высоту треугольника со сторонами 126, 99 и 92
Найти высоту треугольника со сторонами 102, 78 и 43
Найти высоту треугольника со сторонами 139, 120 и 117
Найти высоту треугольника со сторонами 37, 36 и 4
Найти высоту треугольника со сторонами 103, 73 и 32
Найти высоту треугольника со сторонами 126, 99 и 92
Найти высоту треугольника со сторонами 102, 78 и 43
Найти высоту треугольника со сторонами 139, 120 и 117
Найти высоту треугольника со сторонами 37, 36 и 4