Рассчитать высоту треугольника со сторонами 79, 44 и 39
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{79 + 44 + 39}{2}} \normalsize = 81}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{81(81-79)(81-44)(81-39)}}{44}\normalsize = 22.8065889}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{81(81-79)(81-44)(81-39)}}{79}\normalsize = 12.7024039}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{81(81-79)(81-44)(81-39)}}{39}\normalsize = 25.7305105}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 79, 44 и 39 равна 22.8065889
Высота треугольника опущенная с вершины A на сторону BC со сторонами 79, 44 и 39 равна 12.7024039
Высота треугольника опущенная с вершины C на сторону AB со сторонами 79, 44 и 39 равна 25.7305105
Ссылка на результат
?n1=79&n2=44&n3=39
Найти высоту треугольника со сторонами 144, 136 и 32
Найти высоту треугольника со сторонами 149, 98 и 74
Найти высоту треугольника со сторонами 68, 57 и 33
Найти высоту треугольника со сторонами 145, 122 и 95
Найти высоту треугольника со сторонами 132, 100 и 61
Найти высоту треугольника со сторонами 134, 122 и 103
Найти высоту треугольника со сторонами 149, 98 и 74
Найти высоту треугольника со сторонами 68, 57 и 33
Найти высоту треугольника со сторонами 145, 122 и 95
Найти высоту треугольника со сторонами 132, 100 и 61
Найти высоту треугольника со сторонами 134, 122 и 103