Рассчитать высоту треугольника со сторонами 79, 59 и 59
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{79 + 59 + 59}{2}} \normalsize = 98.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{98.5(98.5-79)(98.5-59)(98.5-59)}}{59}\normalsize = 58.6827558}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{98.5(98.5-79)(98.5-59)(98.5-59)}}{79}\normalsize = 43.8263619}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{98.5(98.5-79)(98.5-59)(98.5-59)}}{59}\normalsize = 58.6827558}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 79, 59 и 59 равна 58.6827558
Высота треугольника опущенная с вершины A на сторону BC со сторонами 79, 59 и 59 равна 43.8263619
Высота треугольника опущенная с вершины C на сторону AB со сторонами 79, 59 и 59 равна 58.6827558
Ссылка на результат
?n1=79&n2=59&n3=59
Найти высоту треугольника со сторонами 133, 110 и 34
Найти высоту треугольника со сторонами 69, 50 и 26
Найти высоту треугольника со сторонами 142, 115 и 73
Найти высоту треугольника со сторонами 141, 111 и 53
Найти высоту треугольника со сторонами 131, 72 и 64
Найти высоту треугольника со сторонами 101, 78 и 75
Найти высоту треугольника со сторонами 69, 50 и 26
Найти высоту треугольника со сторонами 142, 115 и 73
Найти высоту треугольника со сторонами 141, 111 и 53
Найти высоту треугольника со сторонами 131, 72 и 64
Найти высоту треугольника со сторонами 101, 78 и 75