Рассчитать высоту треугольника со сторонами 79, 69 и 19
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{79 + 69 + 19}{2}} \normalsize = 83.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{83.5(83.5-79)(83.5-69)(83.5-19)}}{69}\normalsize = 17.1828128}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{83.5(83.5-79)(83.5-69)(83.5-19)}}{79}\normalsize = 15.0077732}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{83.5(83.5-79)(83.5-69)(83.5-19)}}{19}\normalsize = 62.4007411}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 79, 69 и 19 равна 17.1828128
Высота треугольника опущенная с вершины A на сторону BC со сторонами 79, 69 и 19 равна 15.0077732
Высота треугольника опущенная с вершины C на сторону AB со сторонами 79, 69 и 19 равна 62.4007411
Ссылка на результат
?n1=79&n2=69&n3=19
Найти высоту треугольника со сторонами 114, 111 и 108
Найти высоту треугольника со сторонами 54, 43 и 20
Найти высоту треугольника со сторонами 140, 128 и 95
Найти высоту треугольника со сторонами 94, 55 и 40
Найти высоту треугольника со сторонами 33, 18 и 16
Найти высоту треугольника со сторонами 149, 131 и 68
Найти высоту треугольника со сторонами 54, 43 и 20
Найти высоту треугольника со сторонами 140, 128 и 95
Найти высоту треугольника со сторонами 94, 55 и 40
Найти высоту треугольника со сторонами 33, 18 и 16
Найти высоту треугольника со сторонами 149, 131 и 68