Рассчитать высоту треугольника со сторонами 79, 72 и 38

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{79 + 72 + 38}{2}} \normalsize = 94.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{94.5(94.5-79)(94.5-72)(94.5-38)}}{72}\normalsize = 37.9048459}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{94.5(94.5-79)(94.5-72)(94.5-38)}}{79}\normalsize = 34.5461887}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{94.5(94.5-79)(94.5-72)(94.5-38)}}{38}\normalsize = 71.819708}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 79, 72 и 38 равна 37.9048459
Высота треугольника опущенная с вершины A на сторону BC со сторонами 79, 72 и 38 равна 34.5461887
Высота треугольника опущенная с вершины C на сторону AB со сторонами 79, 72 и 38 равна 71.819708
Ссылка на результат
?n1=79&n2=72&n3=38