Рассчитать высоту треугольника со сторонами 79, 72 и 69
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{79 + 72 + 69}{2}} \normalsize = 110}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{110(110-79)(110-72)(110-69)}}{72}\normalsize = 64.0263015}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{110(110-79)(110-72)(110-69)}}{79}\normalsize = 58.3530849}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{110(110-79)(110-72)(110-69)}}{69}\normalsize = 66.8100537}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 79, 72 и 69 равна 64.0263015
Высота треугольника опущенная с вершины A на сторону BC со сторонами 79, 72 и 69 равна 58.3530849
Высота треугольника опущенная с вершины C на сторону AB со сторонами 79, 72 и 69 равна 66.8100537
Ссылка на результат
?n1=79&n2=72&n3=69
Найти высоту треугольника со сторонами 102, 96 и 18
Найти высоту треугольника со сторонами 76, 55 и 43
Найти высоту треугольника со сторонами 56, 53 и 51
Найти высоту треугольника со сторонами 39, 31 и 12
Найти высоту треугольника со сторонами 146, 130 и 47
Найти высоту треугольника со сторонами 45, 40 и 39
Найти высоту треугольника со сторонами 76, 55 и 43
Найти высоту треугольника со сторонами 56, 53 и 51
Найти высоту треугольника со сторонами 39, 31 и 12
Найти высоту треугольника со сторонами 146, 130 и 47
Найти высоту треугольника со сторонами 45, 40 и 39