Рассчитать высоту треугольника со сторонами 79, 74 и 19
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{79 + 74 + 19}{2}} \normalsize = 86}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{86(86-79)(86-74)(86-19)}}{74}\normalsize = 18.8028874}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{86(86-79)(86-74)(86-19)}}{79}\normalsize = 17.6128313}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{86(86-79)(86-74)(86-19)}}{19}\normalsize = 73.2322984}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 79, 74 и 19 равна 18.8028874
Высота треугольника опущенная с вершины A на сторону BC со сторонами 79, 74 и 19 равна 17.6128313
Высота треугольника опущенная с вершины C на сторону AB со сторонами 79, 74 и 19 равна 73.2322984
Ссылка на результат
?n1=79&n2=74&n3=19
Найти высоту треугольника со сторонами 138, 83 и 65
Найти высоту треугольника со сторонами 131, 89 и 74
Найти высоту треугольника со сторонами 84, 76 и 59
Найти высоту треугольника со сторонами 132, 121 и 39
Найти высоту треугольника со сторонами 141, 121 и 82
Найти высоту треугольника со сторонами 64, 49 и 36
Найти высоту треугольника со сторонами 131, 89 и 74
Найти высоту треугольника со сторонами 84, 76 и 59
Найти высоту треугольника со сторонами 132, 121 и 39
Найти высоту треугольника со сторонами 141, 121 и 82
Найти высоту треугольника со сторонами 64, 49 и 36