Рассчитать высоту треугольника со сторонами 79, 74 и 63
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{79 + 74 + 63}{2}} \normalsize = 108}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{108(108-79)(108-74)(108-63)}}{74}\normalsize = 59.1636376}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{108(108-79)(108-74)(108-63)}}{79}\normalsize = 55.4191036}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{108(108-79)(108-74)(108-63)}}{63}\normalsize = 69.4937965}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 79, 74 и 63 равна 59.1636376
Высота треугольника опущенная с вершины A на сторону BC со сторонами 79, 74 и 63 равна 55.4191036
Высота треугольника опущенная с вершины C на сторону AB со сторонами 79, 74 и 63 равна 69.4937965
Ссылка на результат
?n1=79&n2=74&n3=63
Найти высоту треугольника со сторонами 121, 119 и 107
Найти высоту треугольника со сторонами 114, 112 и 35
Найти высоту треугольника со сторонами 132, 114 и 86
Найти высоту треугольника со сторонами 139, 127 и 62
Найти высоту треугольника со сторонами 32, 23 и 14
Найти высоту треугольника со сторонами 130, 69 и 69
Найти высоту треугольника со сторонами 114, 112 и 35
Найти высоту треугольника со сторонами 132, 114 и 86
Найти высоту треугольника со сторонами 139, 127 и 62
Найти высоту треугольника со сторонами 32, 23 и 14
Найти высоту треугольника со сторонами 130, 69 и 69