Рассчитать высоту треугольника со сторонами 79, 74 и 67
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{79 + 74 + 67}{2}} \normalsize = 110}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{110(110-79)(110-74)(110-67)}}{74}\normalsize = 62.0956166}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{110(110-79)(110-74)(110-67)}}{79}\normalsize = 58.1655142}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{110(110-79)(110-74)(110-67)}}{67}\normalsize = 68.5832183}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 79, 74 и 67 равна 62.0956166
Высота треугольника опущенная с вершины A на сторону BC со сторонами 79, 74 и 67 равна 58.1655142
Высота треугольника опущенная с вершины C на сторону AB со сторонами 79, 74 и 67 равна 68.5832183
Ссылка на результат
?n1=79&n2=74&n3=67
Найти высоту треугольника со сторонами 61, 54 и 35
Найти высоту треугольника со сторонами 69, 57 и 38
Найти высоту треугольника со сторонами 119, 79 и 44
Найти высоту треугольника со сторонами 98, 67 и 49
Найти высоту треугольника со сторонами 149, 115 и 54
Найти высоту треугольника со сторонами 88, 61 и 37
Найти высоту треугольника со сторонами 69, 57 и 38
Найти высоту треугольника со сторонами 119, 79 и 44
Найти высоту треугольника со сторонами 98, 67 и 49
Найти высоту треугольника со сторонами 149, 115 и 54
Найти высоту треугольника со сторонами 88, 61 и 37