Рассчитать высоту треугольника со сторонами 79, 75 и 18
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{79 + 75 + 18}{2}} \normalsize = 86}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{86(86-79)(86-75)(86-18)}}{75}\normalsize = 17.8944262}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{86(86-79)(86-75)(86-18)}}{79}\normalsize = 16.9883793}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{86(86-79)(86-75)(86-18)}}{18}\normalsize = 74.5601092}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 79, 75 и 18 равна 17.8944262
Высота треугольника опущенная с вершины A на сторону BC со сторонами 79, 75 и 18 равна 16.9883793
Высота треугольника опущенная с вершины C на сторону AB со сторонами 79, 75 и 18 равна 74.5601092
Ссылка на результат
?n1=79&n2=75&n3=18
Найти высоту треугольника со сторонами 146, 116 и 103
Найти высоту треугольника со сторонами 118, 78 и 56
Найти высоту треугольника со сторонами 114, 80 и 65
Найти высоту треугольника со сторонами 59, 54 и 45
Найти высоту треугольника со сторонами 140, 90 и 72
Найти высоту треугольника со сторонами 130, 114 и 78
Найти высоту треугольника со сторонами 118, 78 и 56
Найти высоту треугольника со сторонами 114, 80 и 65
Найти высоту треугольника со сторонами 59, 54 и 45
Найти высоту треугольника со сторонами 140, 90 и 72
Найти высоту треугольника со сторонами 130, 114 и 78