Рассчитать высоту треугольника со сторонами 79, 75 и 63
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{79 + 75 + 63}{2}} \normalsize = 108.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{108.5(108.5-79)(108.5-75)(108.5-63)}}{75}\normalsize = 58.9010058}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{108.5(108.5-79)(108.5-75)(108.5-63)}}{79}\normalsize = 55.9186764}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{108.5(108.5-79)(108.5-75)(108.5-63)}}{63}\normalsize = 70.120245}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 79, 75 и 63 равна 58.9010058
Высота треугольника опущенная с вершины A на сторону BC со сторонами 79, 75 и 63 равна 55.9186764
Высота треугольника опущенная с вершины C на сторону AB со сторонами 79, 75 и 63 равна 70.120245
Ссылка на результат
?n1=79&n2=75&n3=63
Найти высоту треугольника со сторонами 109, 109 и 57
Найти высоту треугольника со сторонами 144, 119 и 118
Найти высоту треугольника со сторонами 130, 94 и 50
Найти высоту треугольника со сторонами 91, 84 и 21
Найти высоту треугольника со сторонами 104, 76 и 74
Найти высоту треугольника со сторонами 63, 46 и 39
Найти высоту треугольника со сторонами 144, 119 и 118
Найти высоту треугольника со сторонами 130, 94 и 50
Найти высоту треугольника со сторонами 91, 84 и 21
Найти высоту треугольника со сторонами 104, 76 и 74
Найти высоту треугольника со сторонами 63, 46 и 39