Рассчитать высоту треугольника со сторонами 79, 76 и 14
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{79 + 76 + 14}{2}} \normalsize = 84.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{84.5(84.5-79)(84.5-76)(84.5-14)}}{76}\normalsize = 13.8876935}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{84.5(84.5-79)(84.5-76)(84.5-14)}}{79}\normalsize = 13.3603128}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{84.5(84.5-79)(84.5-76)(84.5-14)}}{14}\normalsize = 75.3903363}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 79, 76 и 14 равна 13.8876935
Высота треугольника опущенная с вершины A на сторону BC со сторонами 79, 76 и 14 равна 13.3603128
Высота треугольника опущенная с вершины C на сторону AB со сторонами 79, 76 и 14 равна 75.3903363
Ссылка на результат
?n1=79&n2=76&n3=14
Найти высоту треугольника со сторонами 134, 83 и 62
Найти высоту треугольника со сторонами 48, 36 и 29
Найти высоту треугольника со сторонами 104, 102 и 71
Найти высоту треугольника со сторонами 148, 147 и 23
Найти высоту треугольника со сторонами 137, 104 и 65
Найти высоту треугольника со сторонами 85, 83 и 45
Найти высоту треугольника со сторонами 48, 36 и 29
Найти высоту треугольника со сторонами 104, 102 и 71
Найти высоту треугольника со сторонами 148, 147 и 23
Найти высоту треугольника со сторонами 137, 104 и 65
Найти высоту треугольника со сторонами 85, 83 и 45