Рассчитать высоту треугольника со сторонами 79, 77 и 55
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{79 + 77 + 55}{2}} \normalsize = 105.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{105.5(105.5-79)(105.5-77)(105.5-55)}}{77}\normalsize = 52.1022593}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{105.5(105.5-79)(105.5-77)(105.5-55)}}{79}\normalsize = 50.7832148}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{105.5(105.5-79)(105.5-77)(105.5-55)}}{55}\normalsize = 72.9431631}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 79, 77 и 55 равна 52.1022593
Высота треугольника опущенная с вершины A на сторону BC со сторонами 79, 77 и 55 равна 50.7832148
Высота треугольника опущенная с вершины C на сторону AB со сторонами 79, 77 и 55 равна 72.9431631
Ссылка на результат
?n1=79&n2=77&n3=55
Найти высоту треугольника со сторонами 109, 97 и 63
Найти высоту треугольника со сторонами 106, 79 и 28
Найти высоту треугольника со сторонами 147, 82 и 72
Найти высоту треугольника со сторонами 148, 132 и 112
Найти высоту треугольника со сторонами 98, 82 и 24
Найти высоту треугольника со сторонами 102, 90 и 84
Найти высоту треугольника со сторонами 106, 79 и 28
Найти высоту треугольника со сторонами 147, 82 и 72
Найти высоту треугольника со сторонами 148, 132 и 112
Найти высоту треугольника со сторонами 98, 82 и 24
Найти высоту треугольника со сторонами 102, 90 и 84