Рассчитать высоту треугольника со сторонами 8, 8 и 8
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{8 + 8 + 8}{2}} \normalsize = 12}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{12(12-8)(12-8)(12-8)}}{8}\normalsize = 6.92820323}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{12(12-8)(12-8)(12-8)}}{8}\normalsize = 6.92820323}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{12(12-8)(12-8)(12-8)}}{8}\normalsize = 6.92820323}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 8, 8 и 8 равна 6.92820323
Высота треугольника опущенная с вершины A на сторону BC со сторонами 8, 8 и 8 равна 6.92820323
Высота треугольника опущенная с вершины C на сторону AB со сторонами 8, 8 и 8 равна 6.92820323
Ссылка на результат
?n1=8&n2=8&n3=8
Найти высоту треугольника со сторонами 136, 126 и 49
Найти высоту треугольника со сторонами 120, 112 и 94
Найти высоту треугольника со сторонами 129, 122 и 98
Найти высоту треугольника со сторонами 96, 89 и 73
Найти высоту треугольника со сторонами 126, 118 и 12
Найти высоту треугольника со сторонами 131, 73 и 73
Найти высоту треугольника со сторонами 120, 112 и 94
Найти высоту треугольника со сторонами 129, 122 и 98
Найти высоту треугольника со сторонами 96, 89 и 73
Найти высоту треугольника со сторонами 126, 118 и 12
Найти высоту треугольника со сторонами 131, 73 и 73