Рассчитать высоту треугольника со сторонами 80, 50 и 46
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{80 + 50 + 46}{2}} \normalsize = 88}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{88(88-80)(88-50)(88-46)}}{50}\normalsize = 42.3996981}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{88(88-80)(88-50)(88-46)}}{80}\normalsize = 26.4998113}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{88(88-80)(88-50)(88-46)}}{46}\normalsize = 46.0866284}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 80, 50 и 46 равна 42.3996981
Высота треугольника опущенная с вершины A на сторону BC со сторонами 80, 50 и 46 равна 26.4998113
Высота треугольника опущенная с вершины C на сторону AB со сторонами 80, 50 и 46 равна 46.0866284
Ссылка на результат
?n1=80&n2=50&n3=46
Найти высоту треугольника со сторонами 124, 122 и 27
Найти высоту треугольника со сторонами 109, 92 и 83
Найти высоту треугольника со сторонами 62, 58 и 8
Найти высоту треугольника со сторонами 111, 105 и 52
Найти высоту треугольника со сторонами 107, 93 и 38
Найти высоту треугольника со сторонами 119, 111 и 13
Найти высоту треугольника со сторонами 109, 92 и 83
Найти высоту треугольника со сторонами 62, 58 и 8
Найти высоту треугольника со сторонами 111, 105 и 52
Найти высоту треугольника со сторонами 107, 93 и 38
Найти высоту треугольника со сторонами 119, 111 и 13