Рассчитать высоту треугольника со сторонами 80, 51 и 41
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{80 + 51 + 41}{2}} \normalsize = 86}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{86(86-80)(86-51)(86-41)}}{51}\normalsize = 35.3528922}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{86(86-80)(86-51)(86-41)}}{80}\normalsize = 22.5374688}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{86(86-80)(86-51)(86-41)}}{41}\normalsize = 43.9755489}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 80, 51 и 41 равна 35.3528922
Высота треугольника опущенная с вершины A на сторону BC со сторонами 80, 51 и 41 равна 22.5374688
Высота треугольника опущенная с вершины C на сторону AB со сторонами 80, 51 и 41 равна 43.9755489
Ссылка на результат
?n1=80&n2=51&n3=41
Найти высоту треугольника со сторонами 120, 94 и 47
Найти высоту треугольника со сторонами 144, 129 и 103
Найти высоту треугольника со сторонами 130, 84 и 69
Найти высоту треугольника со сторонами 145, 116 и 37
Найти высоту треугольника со сторонами 148, 143 и 12
Найти высоту треугольника со сторонами 81, 75 и 8
Найти высоту треугольника со сторонами 144, 129 и 103
Найти высоту треугольника со сторонами 130, 84 и 69
Найти высоту треугольника со сторонами 145, 116 и 37
Найти высоту треугольника со сторонами 148, 143 и 12
Найти высоту треугольника со сторонами 81, 75 и 8