Рассчитать высоту треугольника со сторонами 80, 53 и 39
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{80 + 53 + 39}{2}} \normalsize = 86}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{86(86-80)(86-53)(86-39)}}{53}\normalsize = 33.7586348}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{86(86-80)(86-53)(86-39)}}{80}\normalsize = 22.3650956}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{86(86-80)(86-53)(86-39)}}{39}\normalsize = 45.8771191}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 80, 53 и 39 равна 33.7586348
Высота треугольника опущенная с вершины A на сторону BC со сторонами 80, 53 и 39 равна 22.3650956
Высота треугольника опущенная с вершины C на сторону AB со сторонами 80, 53 и 39 равна 45.8771191
Ссылка на результат
?n1=80&n2=53&n3=39
Найти высоту треугольника со сторонами 88, 76 и 73
Найти высоту треугольника со сторонами 141, 98 и 52
Найти высоту треугольника со сторонами 124, 117 и 17
Найти высоту треугольника со сторонами 141, 131 и 58
Найти высоту треугольника со сторонами 113, 95 и 75
Найти высоту треугольника со сторонами 133, 97 и 83
Найти высоту треугольника со сторонами 141, 98 и 52
Найти высоту треугольника со сторонами 124, 117 и 17
Найти высоту треугольника со сторонами 141, 131 и 58
Найти высоту треугольника со сторонами 113, 95 и 75
Найти высоту треугольника со сторонами 133, 97 и 83