Рассчитать высоту треугольника со сторонами 80, 61 и 59

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{80 + 61 + 59}{2}} \normalsize = 100}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{100(100-80)(100-61)(100-59)}}{61}\normalsize = 58.6326321}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{100(100-80)(100-61)(100-59)}}{80}\normalsize = 44.7073819}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{100(100-80)(100-61)(100-59)}}{59}\normalsize = 60.6201789}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 80, 61 и 59 равна 58.6326321
Высота треугольника опущенная с вершины A на сторону BC со сторонами 80, 61 и 59 равна 44.7073819
Высота треугольника опущенная с вершины C на сторону AB со сторонами 80, 61 и 59 равна 60.6201789
Ссылка на результат
?n1=80&n2=61&n3=59