Рассчитать высоту треугольника со сторонами 80, 63 и 40

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{80 + 63 + 40}{2}} \normalsize = 91.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{91.5(91.5-80)(91.5-63)(91.5-40)}}{63}\normalsize = 39.452539}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{91.5(91.5-80)(91.5-63)(91.5-40)}}{80}\normalsize = 31.0688745}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{91.5(91.5-80)(91.5-63)(91.5-40)}}{40}\normalsize = 62.1377489}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 80, 63 и 40 равна 39.452539
Высота треугольника опущенная с вершины A на сторону BC со сторонами 80, 63 и 40 равна 31.0688745
Высота треугольника опущенная с вершины C на сторону AB со сторонами 80, 63 и 40 равна 62.1377489
Ссылка на результат
?n1=80&n2=63&n3=40