Рассчитать высоту треугольника со сторонами 80, 65 и 42
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{80 + 65 + 42}{2}} \normalsize = 93.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{93.5(93.5-80)(93.5-65)(93.5-42)}}{65}\normalsize = 41.880839}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{93.5(93.5-80)(93.5-65)(93.5-42)}}{80}\normalsize = 34.0281817}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{93.5(93.5-80)(93.5-65)(93.5-42)}}{42}\normalsize = 64.8155842}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 80, 65 и 42 равна 41.880839
Высота треугольника опущенная с вершины A на сторону BC со сторонами 80, 65 и 42 равна 34.0281817
Высота треугольника опущенная с вершины C на сторону AB со сторонами 80, 65 и 42 равна 64.8155842
Ссылка на результат
?n1=80&n2=65&n3=42
Найти высоту треугольника со сторонами 64, 60 и 6
Найти высоту треугольника со сторонами 107, 71 и 65
Найти высоту треугольника со сторонами 122, 118 и 89
Найти высоту треугольника со сторонами 145, 122 и 111
Найти высоту треугольника со сторонами 139, 114 и 77
Найти высоту треугольника со сторонами 124, 90 и 46
Найти высоту треугольника со сторонами 107, 71 и 65
Найти высоту треугольника со сторонами 122, 118 и 89
Найти высоту треугольника со сторонами 145, 122 и 111
Найти высоту треугольника со сторонами 139, 114 и 77
Найти высоту треугольника со сторонами 124, 90 и 46