Рассчитать высоту треугольника со сторонами 80, 68 и 33
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{80 + 68 + 33}{2}} \normalsize = 90.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{90.5(90.5-80)(90.5-68)(90.5-33)}}{68}\normalsize = 32.6110816}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{90.5(90.5-80)(90.5-68)(90.5-33)}}{80}\normalsize = 27.7194194}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{90.5(90.5-80)(90.5-68)(90.5-33)}}{33}\normalsize = 67.1985924}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 80, 68 и 33 равна 32.6110816
Высота треугольника опущенная с вершины A на сторону BC со сторонами 80, 68 и 33 равна 27.7194194
Высота треугольника опущенная с вершины C на сторону AB со сторонами 80, 68 и 33 равна 67.1985924
Ссылка на результат
?n1=80&n2=68&n3=33
Найти высоту треугольника со сторонами 90, 77 и 55
Найти высоту треугольника со сторонами 91, 57 и 49
Найти высоту треугольника со сторонами 112, 81 и 36
Найти высоту треугольника со сторонами 114, 114 и 104
Найти высоту треугольника со сторонами 115, 90 и 58
Найти высоту треугольника со сторонами 120, 90 и 67
Найти высоту треугольника со сторонами 91, 57 и 49
Найти высоту треугольника со сторонами 112, 81 и 36
Найти высоту треугольника со сторонами 114, 114 и 104
Найти высоту треугольника со сторонами 115, 90 и 58
Найти высоту треугольника со сторонами 120, 90 и 67