Рассчитать высоту треугольника со сторонами 80, 70 и 41
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{80 + 70 + 41}{2}} \normalsize = 95.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{95.5(95.5-80)(95.5-70)(95.5-41)}}{70}\normalsize = 40.979611}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{95.5(95.5-80)(95.5-70)(95.5-41)}}{80}\normalsize = 35.8571597}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{95.5(95.5-80)(95.5-70)(95.5-41)}}{41}\normalsize = 69.9651896}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 80, 70 и 41 равна 40.979611
Высота треугольника опущенная с вершины A на сторону BC со сторонами 80, 70 и 41 равна 35.8571597
Высота треугольника опущенная с вершины C на сторону AB со сторонами 80, 70 и 41 равна 69.9651896
Ссылка на результат
?n1=80&n2=70&n3=41
Найти высоту треугольника со сторонами 74, 51 и 28
Найти высоту треугольника со сторонами 88, 69 и 37
Найти высоту треугольника со сторонами 101, 69 и 64
Найти высоту треугольника со сторонами 72, 56 и 18
Найти высоту треугольника со сторонами 113, 113 и 24
Найти высоту треугольника со сторонами 145, 107 и 45
Найти высоту треугольника со сторонами 88, 69 и 37
Найти высоту треугольника со сторонами 101, 69 и 64
Найти высоту треугольника со сторонами 72, 56 и 18
Найти высоту треугольника со сторонами 113, 113 и 24
Найти высоту треугольника со сторонами 145, 107 и 45