Рассчитать высоту треугольника со сторонами 80, 73 и 31
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{80 + 73 + 31}{2}} \normalsize = 92}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{92(92-80)(92-73)(92-31)}}{73}\normalsize = 30.990843}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{92(92-80)(92-73)(92-31)}}{80}\normalsize = 28.2791443}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{92(92-80)(92-73)(92-31)}}{31}\normalsize = 72.9784368}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 80, 73 и 31 равна 30.990843
Высота треугольника опущенная с вершины A на сторону BC со сторонами 80, 73 и 31 равна 28.2791443
Высота треугольника опущенная с вершины C на сторону AB со сторонами 80, 73 и 31 равна 72.9784368
Ссылка на результат
?n1=80&n2=73&n3=31
Найти высоту треугольника со сторонами 143, 125 и 50
Найти высоту треугольника со сторонами 143, 131 и 32
Найти высоту треугольника со сторонами 149, 128 и 56
Найти высоту треугольника со сторонами 90, 82 и 9
Найти высоту треугольника со сторонами 70, 69 и 66
Найти высоту треугольника со сторонами 85, 63 и 61
Найти высоту треугольника со сторонами 143, 131 и 32
Найти высоту треугольника со сторонами 149, 128 и 56
Найти высоту треугольника со сторонами 90, 82 и 9
Найти высоту треугольника со сторонами 70, 69 и 66
Найти высоту треугольника со сторонами 85, 63 и 61