Рассчитать высоту треугольника со сторонами 80, 75 и 69
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{80 + 75 + 69}{2}} \normalsize = 112}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{112(112-80)(112-75)(112-69)}}{75}\normalsize = 63.6777666}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{112(112-80)(112-75)(112-69)}}{80}\normalsize = 59.6979062}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{112(112-80)(112-75)(112-69)}}{69}\normalsize = 69.2149637}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 80, 75 и 69 равна 63.6777666
Высота треугольника опущенная с вершины A на сторону BC со сторонами 80, 75 и 69 равна 59.6979062
Высота треугольника опущенная с вершины C на сторону AB со сторонами 80, 75 и 69 равна 69.2149637
Ссылка на результат
?n1=80&n2=75&n3=69
Найти высоту треугольника со сторонами 109, 84 и 52
Найти высоту треугольника со сторонами 40, 24 и 21
Найти высоту треугольника со сторонами 114, 84 и 52
Найти высоту треугольника со сторонами 138, 89 и 64
Найти высоту треугольника со сторонами 145, 115 и 100
Найти высоту треугольника со сторонами 134, 109 и 75
Найти высоту треугольника со сторонами 40, 24 и 21
Найти высоту треугольника со сторонами 114, 84 и 52
Найти высоту треугольника со сторонами 138, 89 и 64
Найти высоту треугольника со сторонами 145, 115 и 100
Найти высоту треугольника со сторонами 134, 109 и 75