Рассчитать высоту треугольника со сторонами 80, 77 и 55
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{80 + 77 + 55}{2}} \normalsize = 106}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{106(106-80)(106-77)(106-55)}}{77}\normalsize = 52.4400339}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{106(106-80)(106-77)(106-55)}}{80}\normalsize = 50.4735327}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{106(106-80)(106-77)(106-55)}}{55}\normalsize = 73.4160475}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 80, 77 и 55 равна 52.4400339
Высота треугольника опущенная с вершины A на сторону BC со сторонами 80, 77 и 55 равна 50.4735327
Высота треугольника опущенная с вершины C на сторону AB со сторонами 80, 77 и 55 равна 73.4160475
Ссылка на результат
?n1=80&n2=77&n3=55
Найти высоту треугольника со сторонами 97, 93 и 64
Найти высоту треугольника со сторонами 116, 113 и 30
Найти высоту треугольника со сторонами 150, 129 и 66
Найти высоту треугольника со сторонами 130, 96 и 42
Найти высоту треугольника со сторонами 144, 119 и 78
Найти высоту треугольника со сторонами 63, 51 и 14
Найти высоту треугольника со сторонами 116, 113 и 30
Найти высоту треугольника со сторонами 150, 129 и 66
Найти высоту треугольника со сторонами 130, 96 и 42
Найти высоту треугольника со сторонами 144, 119 и 78
Найти высоту треугольника со сторонами 63, 51 и 14