Рассчитать высоту треугольника со сторонами 80, 80 и 69
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{80 + 80 + 69}{2}} \normalsize = 114.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{114.5(114.5-80)(114.5-80)(114.5-69)}}{80}\normalsize = 62.2540407}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{114.5(114.5-80)(114.5-80)(114.5-69)}}{80}\normalsize = 62.2540407}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{114.5(114.5-80)(114.5-80)(114.5-69)}}{69}\normalsize = 72.1785979}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 80, 80 и 69 равна 62.2540407
Высота треугольника опущенная с вершины A на сторону BC со сторонами 80, 80 и 69 равна 62.2540407
Высота треугольника опущенная с вершины C на сторону AB со сторонами 80, 80 и 69 равна 72.1785979
Ссылка на результат
?n1=80&n2=80&n3=69
Найти высоту треугольника со сторонами 112, 93 и 40
Найти высоту треугольника со сторонами 140, 137 и 43
Найти высоту треугольника со сторонами 68, 58 и 34
Найти высоту треугольника со сторонами 83, 83 и 28
Найти высоту треугольника со сторонами 129, 76 и 65
Найти высоту треугольника со сторонами 135, 101 и 92
Найти высоту треугольника со сторонами 140, 137 и 43
Найти высоту треугольника со сторонами 68, 58 и 34
Найти высоту треугольника со сторонами 83, 83 и 28
Найти высоту треугольника со сторонами 129, 76 и 65
Найти высоту треугольника со сторонами 135, 101 и 92