Рассчитать высоту треугольника со сторонами 81, 47 и 42
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{81 + 47 + 42}{2}} \normalsize = 85}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{85(85-81)(85-47)(85-42)}}{47}\normalsize = 31.7174031}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{85(85-81)(85-47)(85-42)}}{81}\normalsize = 18.4039253}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{85(85-81)(85-47)(85-42)}}{42}\normalsize = 35.4932845}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 81, 47 и 42 равна 31.7174031
Высота треугольника опущенная с вершины A на сторону BC со сторонами 81, 47 и 42 равна 18.4039253
Высота треугольника опущенная с вершины C на сторону AB со сторонами 81, 47 и 42 равна 35.4932845
Ссылка на результат
?n1=81&n2=47&n3=42
Найти высоту треугольника со сторонами 149, 112 и 68
Найти высоту треугольника со сторонами 127, 118 и 46
Найти высоту треугольника со сторонами 146, 137 и 115
Найти высоту треугольника со сторонами 106, 76 и 38
Найти высоту треугольника со сторонами 130, 101 и 69
Найти высоту треугольника со сторонами 89, 55 и 40
Найти высоту треугольника со сторонами 127, 118 и 46
Найти высоту треугольника со сторонами 146, 137 и 115
Найти высоту треугольника со сторонами 106, 76 и 38
Найти высоту треугольника со сторонами 130, 101 и 69
Найти высоту треугольника со сторонами 89, 55 и 40