Рассчитать высоту треугольника со сторонами 81, 57 и 48
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{81 + 57 + 48}{2}} \normalsize = 93}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{93(93-81)(93-57)(93-48)}}{57}\normalsize = 47.1785669}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{93(93-81)(93-57)(93-48)}}{81}\normalsize = 33.1997323}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{93(93-81)(93-57)(93-48)}}{48}\normalsize = 56.0245482}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 81, 57 и 48 равна 47.1785669
Высота треугольника опущенная с вершины A на сторону BC со сторонами 81, 57 и 48 равна 33.1997323
Высота треугольника опущенная с вершины C на сторону AB со сторонами 81, 57 и 48 равна 56.0245482
Ссылка на результат
?n1=81&n2=57&n3=48
Найти высоту треугольника со сторонами 104, 89 и 71
Найти высоту треугольника со сторонами 80, 79 и 32
Найти высоту треугольника со сторонами 141, 124 и 85
Найти высоту треугольника со сторонами 149, 147 и 10
Найти высоту треугольника со сторонами 124, 98 и 83
Найти высоту треугольника со сторонами 146, 142 и 57
Найти высоту треугольника со сторонами 80, 79 и 32
Найти высоту треугольника со сторонами 141, 124 и 85
Найти высоту треугольника со сторонами 149, 147 и 10
Найти высоту треугольника со сторонами 124, 98 и 83
Найти высоту треугольника со сторонами 146, 142 и 57