Рассчитать высоту треугольника со сторонами 81, 60 и 53
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{81 + 60 + 53}{2}} \normalsize = 97}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{97(97-81)(97-60)(97-53)}}{60}\normalsize = 52.9848616}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{97(97-81)(97-60)(97-53)}}{81}\normalsize = 39.2480456}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{97(97-81)(97-60)(97-53)}}{53}\normalsize = 59.9828622}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 81, 60 и 53 равна 52.9848616
Высота треугольника опущенная с вершины A на сторону BC со сторонами 81, 60 и 53 равна 39.2480456
Высота треугольника опущенная с вершины C на сторону AB со сторонами 81, 60 и 53 равна 59.9828622
Ссылка на результат
?n1=81&n2=60&n3=53
Найти высоту треугольника со сторонами 94, 81 и 65
Найти высоту треугольника со сторонами 150, 139 и 50
Найти высоту треугольника со сторонами 118, 103 и 75
Найти высоту треугольника со сторонами 127, 111 и 110
Найти высоту треугольника со сторонами 105, 95 и 34
Найти высоту треугольника со сторонами 109, 103 и 67
Найти высоту треугольника со сторонами 150, 139 и 50
Найти высоту треугольника со сторонами 118, 103 и 75
Найти высоту треугольника со сторонами 127, 111 и 110
Найти высоту треугольника со сторонами 105, 95 и 34
Найти высоту треугольника со сторонами 109, 103 и 67