Рассчитать высоту треугольника со сторонами 81, 60 и 59
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{81 + 60 + 59}{2}} \normalsize = 100}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{100(100-81)(100-60)(100-59)}}{60}\normalsize = 58.8406511}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{100(100-81)(100-60)(100-59)}}{81}\normalsize = 43.5856675}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{100(100-81)(100-60)(100-59)}}{59}\normalsize = 59.8379503}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 81, 60 и 59 равна 58.8406511
Высота треугольника опущенная с вершины A на сторону BC со сторонами 81, 60 и 59 равна 43.5856675
Высота треугольника опущенная с вершины C на сторону AB со сторонами 81, 60 и 59 равна 59.8379503
Ссылка на результат
?n1=81&n2=60&n3=59
Найти высоту треугольника со сторонами 36, 34 и 18
Найти высоту треугольника со сторонами 80, 66 и 37
Найти высоту треугольника со сторонами 131, 97 и 97
Найти высоту треугольника со сторонами 71, 69 и 39
Найти высоту треугольника со сторонами 97, 88 и 81
Найти высоту треугольника со сторонами 141, 129 и 122
Найти высоту треугольника со сторонами 80, 66 и 37
Найти высоту треугольника со сторонами 131, 97 и 97
Найти высоту треугольника со сторонами 71, 69 и 39
Найти высоту треугольника со сторонами 97, 88 и 81
Найти высоту треугольника со сторонами 141, 129 и 122