Рассчитать высоту треугольника со сторонами 81, 67 и 56
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{81 + 67 + 56}{2}} \normalsize = 102}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{102(102-81)(102-67)(102-56)}}{67}\normalsize = 55.4342102}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{102(102-81)(102-67)(102-56)}}{81}\normalsize = 45.8529887}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{102(102-81)(102-67)(102-56)}}{56}\normalsize = 66.3230729}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 81, 67 и 56 равна 55.4342102
Высота треугольника опущенная с вершины A на сторону BC со сторонами 81, 67 и 56 равна 45.8529887
Высота треугольника опущенная с вершины C на сторону AB со сторонами 81, 67 и 56 равна 66.3230729
Ссылка на результат
?n1=81&n2=67&n3=56
Найти высоту треугольника со сторонами 81, 73 и 17
Найти высоту треугольника со сторонами 134, 126 и 71
Найти высоту треугольника со сторонами 89, 89 и 17
Найти высоту треугольника со сторонами 97, 60 и 53
Найти высоту треугольника со сторонами 59, 52 и 32
Найти высоту треугольника со сторонами 124, 110 и 92
Найти высоту треугольника со сторонами 134, 126 и 71
Найти высоту треугольника со сторонами 89, 89 и 17
Найти высоту треугольника со сторонами 97, 60 и 53
Найти высоту треугольника со сторонами 59, 52 и 32
Найти высоту треугольника со сторонами 124, 110 и 92