Рассчитать высоту треугольника со сторонами 81, 68 и 35
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{81 + 68 + 35}{2}} \normalsize = 92}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{92(92-81)(92-68)(92-35)}}{68}\normalsize = 34.6062378}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{92(92-81)(92-68)(92-35)}}{81}\normalsize = 29.0521503}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{92(92-81)(92-68)(92-35)}}{35}\normalsize = 67.2349763}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 81, 68 и 35 равна 34.6062378
Высота треугольника опущенная с вершины A на сторону BC со сторонами 81, 68 и 35 равна 29.0521503
Высота треугольника опущенная с вершины C на сторону AB со сторонами 81, 68 и 35 равна 67.2349763
Ссылка на результат
?n1=81&n2=68&n3=35
Найти высоту треугольника со сторонами 150, 87 и 81
Найти высоту треугольника со сторонами 42, 30 и 30
Найти высоту треугольника со сторонами 74, 65 и 21
Найти высоту треугольника со сторонами 68, 50 и 46
Найти высоту треугольника со сторонами 90, 67 и 51
Найти высоту треугольника со сторонами 113, 94 и 31
Найти высоту треугольника со сторонами 42, 30 и 30
Найти высоту треугольника со сторонами 74, 65 и 21
Найти высоту треугольника со сторонами 68, 50 и 46
Найти высоту треугольника со сторонами 90, 67 и 51
Найти высоту треугольника со сторонами 113, 94 и 31